Fully-funded four year PhD studentship in Variational Bayesian Inversion Approaches for Ultrasonic Tomography
Start date: 1st October 2020.
Location: Department of Mathematics and Statistics, University of Strathclyde, Glasgow, U.K.
Supervisory Team: Dr Katherine Tant, Dr Mohammud Foondun, Prof Victorita Dolean
Project Description:
A fully-funded four year PhD studentship is available, starting on 1st October 2020. The intra-disciplinary research will be supervised by Dr Katherine Tant and undertaken primarily within the Continuum Mechanics and Industrial Mathematics group in the Department of Mathematics and Statistics at the University of Strathclyde. The student will also have the opportunity to interact with the Stochastic Analysis group and the Numerical Analysis and Scientific Computing group through their second supervisors, Dr Mohammud Foondun and Professor Victorita Dolean Maini.
Ultrasonic non-destructive evaluation (NDE) is critical for structural assessment of the UK’s aging industrial infrastructure, as well as for the monitoring and quality control of modern additive manufacturing methods. It concerns the practice of transmitting mechanical waves through a solid object and subsequently using the reflected wave data collected on its surface to ‘see the unseen’; that is to create an image of the object’s interior which highlights any embedded defects. Mathematically, this is known as an inverse problem. This project will focus on developing new ultrasonic tomography techniques for NDE based on the principles of Bayesian inference, which provide a convenient mathematical framework to estimate the joint conditional probability distribution of the spatially varying material properties of an object given some observed boundary measurement data (this is the posterior distribution). Typically, Markov chain Monte Carlo sampling methods are used to obtain numerical approximations of the true posterior distribution, but these approaches are often computationally intractable for high-dimensional parameter spaces (such as those present in ultrasonic tomography problems). This project will examine Variational Bayesian (VB) approaches instead, where the Bayesian inverse problem is formulated as a more computationally efficient deterministic optimisation problem.
This is a very exciting project which will allow the student to work at the interface between mathematics and industry. The student will attend regular research seminars and events within the Mathematics and Statistics department and the Centre for Ultrasonic Engineering at Strathclyde, and so will have many opportunities to interact with a multi-disciplinary team and develop both technically and professionally.
Applicants should have, or be expecting to obtain in the near future, a first class or good 2.1 honours degree (or equivalent) in mathematics or a mathematical science. The studentship covers full tuition fees and a tax-free stipend for four years starting in October 2020. Funding is only available to UK nationals and to EU nationals who have lived in the UK for three years prior to the start of the studentship.
Apply Now by sending a CV and cover letter to katy.tant@strath.ac.uk
Please note: Due to the current COVID-19 restrictions, interviews will be taking place remotely via video-call or phone-call.
Posted on 8th June 2020 in